
Package: trtf (via r-universe)
October 17, 2024

Title Transformation Trees and Forests

Version 0.4-2

Date 2023-02-10

Description Recursive partytioning of transformation models with
corresponding random forest for conditional transformation
models as described in 'Transformation Forests' (Hothorn and
Zeileis, 2021, <doi:10.1080/10618600.2021.1872581>) and
'Top-Down Transformation Choice' (Hothorn, 2018,
<DOI:10.1177/1471082X17748081>).

Depends mlt (>= 1.4-1), partykit (>= 1.2-1), tram

Imports Formula, sandwich, grid, stats, variables, libcoin, utils,
grDevices

Suggests survival, TH.data, coin

URL http://ctm.R-forge.R-project.org

License GPL-2

Repository https://trafo-universe.r-universe.dev

RemoteUrl https://github.com/r-forge/ctm

RemoteRef HEAD

RemoteSha bf68b8828a608dd9499a74af1bfdb746420dbc03

Contents

trtf-package . 2
traforest . 2
trafotree . 5

Index 8

1

https://doi.org/10.1080/10618600.2021.1872581
https://doi.org/10.1177/1471082X17748081
http://ctm.R-forge.R-project.org

2 traforest

trtf-package General Information on the trtf Package

Description

The trtf package implements transformation trees and transformation forests as described in Hothorn
and Zeileis (2017).

Example applications of transformation trees and forests can be replicated using demo("applications")
and demo("BMI"). Figure 1 in Hothorn and Zeileis (2017) can be reproduced by demo("QRF").
Source code of simulation experiments is available in directory trtf/inst/sim.

Author(s)

This package is authored by Torsten Hothorn <Torsten.Hothorn@R-project.org>.

References

Torsten Hothorn and Achim Zeileis (2017). Transformation Forests. https://arxiv.org/abs/
1701.02110.

traforest Transformation Forests

Description

Partitioned and aggregated transformation models

Usage

traforest(object, parm = 1:length(coef(object)), reparm = NULL,
intercept = c("none", "shift", "scale", "shift-scale"),
update = TRUE, min_update = length(coef(object)) * 2,
mltargs = list(), ...)

S3 method for class 'traforest'
predict(object, newdata, mnewdata = data.frame(1), K = 20, q = NULL,

type = c("weights", "node", "coef", "trafo", "distribution", "survivor", "density",
"logdensity", "hazard", "loghazard", "cumhazard", "quantile"),

OOB = FALSE, simplify = FALSE, trace = FALSE, updatestart = FALSE,
applyfun = NULL, cores = NULL, ...)

S3 method for class 'traforest'
logLik(object, newdata, weights = NULL, OOB = FALSE, coef = NULL, ...)

https://arxiv.org/abs/1701.02110
https://arxiv.org/abs/1701.02110

traforest 3

Arguments

object an object of class ctm or mlt specifying the abstract model to be partitioned.

parm parameters of object those corresponding score is used for finding partitions.

reparm optional matrix of contrasts for reparameterisation of the scores. teststat =
"quadratic" is invariant to this operation but teststat = "max" might be more
powerful for example when formulating an implicit into an explicit intercept
term.

intercept add optional intercept parameters (constraint to zero) to the model.

mltargs arguments to mlt for fitting the transformation models.

update logical, if TRUE, models and thus scores are updated in every node. If FALSE, the
model and scores are computed once in the root node. The latter option is faster
but less accurate.

min_update number of observations necessary to refit the model in a node. If less observa-
tions are available, the parameters from the parent node will be reused.

newdata an optional data frame of observations for the forest.

mnewdata an optional data frame of observations for the model.

K number of grid points to generate (in the absence of q).

q quantiles at which to evaluate the model.

type type of prediction or plot to generate.

OOB compute out-of-bag predictions.

simplify simplify predictions (if possible).

trace a logical indicating if a progress bar shall be printed while the predictions are
computed.

updatestart try to be smart about starting values for computing predictions (experimental).

applyfun an optional lapply-style function with arguments function(X, FUN, ...) for
looping over newdata. The default is to use the basic lapply function unless
the cores argument is specified (see below).

cores numeric. If set to an integer the applyfun is set to mclapply with the desired
number of cores.

weights an optional vector of weights.

coef an optional matrix of precomputed coefficients for newdata (using predict).
Helps to compute the coefficients once for later reuse (different weights, for
example).

... arguments to cforest, at least formula and data.

Details

Conditional inference trees are used for partitioning likelihood-based transformation models as de-
scribed in Hothorn and Zeileis (2017). The method can be seen in action in Hothorn (2018) and the
corresponding code is available as demo("BMI").

4 traforest

Value

An object of class traforest with corresponding logLik and predict methods.

References

Torsten Hothorn and Achim Zeileis (2021). Predictive Distribution Modelling Using Transforma-
tion Forests. Journal of Computational and Graphical Statistics, doi:10.1080/10618600.2021.1872581.

Torsten Hothorn (2018). Top-Down Transformation Choice. Statistical Modelling, 3-4, 274-298.
doi:10.1177/1471082X17748081.

Natalia Korepanova, Heidi Seibold, Verena Steffen and Torsten Hothorn (2019). Survival Forests
under Test: Impact of the Proportional Hazards Assumption on Prognostic and Predictive Forests
for ALS Survival. doi:10.1177/0962280219862586.

Examples

Example: Personalised Medicine Using Partitioned and Aggregated Cox-Models
A combination of <DOI:10.1177/0962280217693034> and <arXiv:1701.02110>
based on infrastructure in the mlt R add-on package described in
https://cran.r-project.org/web/packages/mlt.docreg/vignettes/mlt.pdf

library("trtf")
library("survival")
German Breast Cancer Study Group 2 data set
data("GBSG2", package = "TH.data")
GBSG2$y <- with(GBSG2, Surv(time, cens))

set-up Cox model with overall treatment effect in hormonal therapy
cmod <- Coxph(y ~ horTh, data = GBSG2, support = c(100, 2000), order = 5)

overall log-hazard ratio
coef(cmod)
roughly the same as
coef(coxph(y ~ horTh, data = GBSG2))

Not run:

estimate age-dependent Cox models (here ignoring all other covariates)
ctrl <- ctree_control(minsplit = 50, minbucket = 20, mincriterion = 0)
set.seed(290875)
tf_cmod <- traforest(cmod, formula = y ~ horTh | age, control = ctrl,

ntree = 50, mtry = 1, trace = TRUE, data = GBSG2)

plot age-dependent treatment effects vs. overall treatment effect
nd <- data.frame(age = 30:70)
cf <- predict(tf_cmod, newdata = nd, type = "coef")
nd$logHR <- sapply(cf, function(x) x["horThyes"])
plot(logHR ~ age, data = nd, pch = 19, xlab = "Age", ylab = "log-Hazard Ratio")
abline(h = coef(cmod <- mlt(m, data = GBSG2))["horThyes"])
treatment most beneficial in very young patients
NOTE: scale of log-hazard ratios depends on
corresponding baseline hazard function which _differs_

https://doi.org/10.1080/10618600.2021.1872581
https://doi.org/10.1177/1471082X17748081
https://doi.org/10.1177/0962280219862586

trafotree 5

across age; interpretation of positive / negative treatment effect is,
however, save.

mclapply doesn't work in Windows
if (.Platform$OS.type != "windows") {

computing predictions: predicted coefficients
cf1 <- predict(tf_cmod, newdata = nd, type = "coef")
speedup with plenty of RAM and 4 cores
cf2 <- predict(tf_cmod, newdata = nd, cores = 4, type = "coef")
memory-efficient with low RAM and _one_ core
cf3 <- predict(tf_cmod, newdata = nd, cores = 4, applyfun = lapply, type = "coef")
all.equal(cf1, cf2)
all.equal(cf1, cf3)

}

End(Not run)

trafotree Transformation Trees

Description

Partitioned transformation models

Usage

trafotree(object, parm = 1:length(coef(object)), reparm = NULL,
intercept = c("none", "shift", "scale", "shift-scale"),
min_update = length(coef(object)) * 2,
mltargs = list(), ...)

S3 method for class 'trafotree'
predict(object, newdata, K = 20, q = NULL,

type = c("node", "coef", "trafo", "distribution", "survivor", "density",
"logdensity", "hazard", "loghazard", "cumhazard", "quantile"),

perm = NULL, ...)
S3 method for class 'trafotree'
logLik(object, newdata, weights = NULL, perm = NULL, ...)

Arguments

object an object of class ctm or mlt specifying the abstract model to be partitioned. For
predict and logLik, object is an object of class trafotree.

parm parameters of object those corresponding score is used for finding partitions.

6 trafotree

reparm optional matrix of contrasts for reparameterisation of the scores. teststat =
"quadratic" is invariant to this operation but teststat = "max" might be more
powerful for example when formulating an implicit into an explicit intercept
term.

intercept add optional intercept parameters (constraint to zero) to the model. It may make
sense to restrict attention to scores corresponding to those intercept parameters,
the additional argument parm = NULL is needed in this case.

min_update number of observations necessary to refit the model in a node. If less observa-
tions are available, the parameters from the parent node will be reused.

mltargs arguments to mlt for fitting the transformation models.

newdata an optional data frame of observations.

K number of grid points to generate (in the absence of q).

q quantiles at which to evaluate the model.

type type of prediction or plot to generate.

weights an optional vector of weights.

perm a vector of integers specifying the variables to be permuted prior before split-
ting (i.e., for computing permutation variable importances). The default NULL
doesn’t alter the data, see fitted_node.

... arguments to ctree, at least formula and data.

Details

Conditional inference trees are used for partitioning likelihood-based transformation models as de-
scribed in Hothorn and Zeileis (2017). The method can be seen in action in Hothorn (2018) and
the corresponding code is available as demo("BMI"). demo("applications") performs transfor-
mation tree analyses for some standard benchmarking problems.

Value

An object of class trafotree with corresponding plot, logLik and predict methods.

References

Torsten Hothorn and Achim Zeileis (2021). Predictive Distribution Modelling Using Transforma-
tion Forests. Journal of Computational and Graphical Statistics, doi:10.1080/10618600.2021.1872581.

Torsten Hothorn (2018). Top-Down Transformation Choice. Statistical Modelling, 3-4, 274-298.
doi:10.1177/1471082X17748081

Natalia Korepanova, Heidi Seibold, Verena Steffen and Torsten Hothorn (2019). Survival Forests
under Test: Impact of the Proportional Hazards Assumption on Prognostic and Predictive Forests
for ALS Survival. doi:10.1177/0962280219862586.

https://doi.org/10.1080/10618600.2021.1872581
https://doi.org/10.1177/1471082X17748081
https://doi.org/10.1177/0962280219862586

trafotree 7

Examples

Example: Stratified Medicine Using Partitioned Cox-Models
A combination of <DOI:10.1515/ijb-2015-0032> and <arXiv:1701.02110>
based on infrastructure in the mlt R add-on package described in
https://cran.r-project.org/web/packages/mlt.docreg/vignettes/mlt.pdf

library("trtf")
library("survival")
German Breast Cancer Study Group 2 data set
data("GBSG2", package = "TH.data")
GBSG2$y <- with(GBSG2, Surv(time, cens))

set-up Cox model with overall treatment effect in hormonal therapy
cmod <- Coxph(y ~ horTh, data = GBSG2, support = c(100, 2000), order = 5)

overall log-hazard ratio
coef(cmod)
roughly the same as
coef(coxph(y ~ horTh, data = GBSG2))

partition the model, ie both the baseline hazard function AND the
treatment effect
(part_cmod <- trafotree(cmod, formula = y ~ horTh | age + menostat + tsize +

tgrade + pnodes + progrec + estrec, data = GBSG2))

compare the log-likelihoods
logLik(cmod)
logLik(part_cmod)

stronger effects in nodes 2 and 4 and no effect in node 5
coef(part_cmod)[, "horThyes"]

plot the conditional survivor functions; blue is untreated
and green is hormonal therapy
nd <- data.frame(horTh = sort(unique(GBSG2$horTh)))
plot(part_cmod, newdata = nd,

tp_args = list(type = "survivor", col = c("cadetblue3", "chartreuse4")))

same model, but with explicit intercept term and max-type statistic
for _variable_ selection
(part_cmod_max <- trafotree(cmod, formula = y ~ horTh | age + menostat + tsize +

tgrade + pnodes + progrec + estrec, data = GBSG2, intercept = "shift",
control = ctree_control(teststat = "max")))

logLik(part_cmod_max)
coef(part_cmod_max)[, "horThyes"]

the trees (and log-likelihoods are the same) but the
p-values are sometimes much smaller in the latter tree
cbind(format.pval(info_node(node_party(part_cmod))$criterion["p.value",]),

format.pval(info_node(node_party(part_cmod_max))$criterion["p.value",]))

Index

∗ package
trtf-package, 2

∗ trees
traforest, 2
trafotree, 5

cforest, 3
ctm, 3, 5
ctree, 6

fitted_node, 6

logLik.traforest (traforest), 2
logLik.trafotree (trafotree), 5

mlt, 3, 5, 6

predict.traforest (traforest), 2
predict.trafotree (trafotree), 5

traforest, 2
trafotree, 5
trtf-package, 2

8

	trtf-package
	traforest
	trafotree
	Index

